If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+4n=510
We move all terms to the left:
2n^2+4n-(510)=0
a = 2; b = 4; c = -510;
Δ = b2-4ac
Δ = 42-4·2·(-510)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-64}{2*2}=\frac{-68}{4} =-17 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+64}{2*2}=\frac{60}{4} =15 $
| 4y+10=6 | | 25x+15x=12500 | | 5e=13 | | 4x–3=25 | | 5^x=250 | | (3x-7)=(2x-4) | | n-5/8=1 | | 3a^2a=-3 | | 3/2-3x/4=0 | | 9=2x+133 | | 2x^+2x-1=0 | | 10=2x=38 | | 18=3x=30 | | 2x^2+10x+75=0 | | 13(x+13)=10(x-1) | | 20x^2-50x+119=0 | | 2x*2+5x+75=0 | | 4(2x-4)=6(x-1) | | 20x^2+50x+119=0 | | -1/5+1/5x=2+14/5x | | 2^(2x)=6*2^(x)+16 | | 1/6x+6-2/3-1=4 | | 8x+12/2=x-3 | | 1/6r+6-2/3-1=4 | | 6x+2x^2+8=1 | | Q=10-2pQ=-5+3p | | 13f-4f=61 | | X×x-32=68 | | 13-4x=8x-3 | | 6x-14=5x-5 | | x+1/14=8/7 | | P(x)=3x-2 |